Copied to
clipboard

G = C42.29Q8order 128 = 27

29th non-split extension by C42 of Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.29Q8, C4⋊C88C4, C41(C2.D8), C4⋊C4.15Q8, C4.35(C4×Q8), C4⋊C4.217D4, C4.143(C4×D4), (C2×C4).134D8, C4.16(C4⋊Q8), (C2×C4).61Q16, C2.4(C4⋊D8), C22.45(C2×D8), C429C4.9C2, C42.150(C2×C4), C2.4(C4.Q16), C2.4(D4⋊Q8), C2.4(C42Q16), C23.792(C2×D4), (C22×C4).759D4, C22.38(C2×Q16), C4.15(C42.C2), C22.91(C8⋊C22), C22.4Q16.35C2, (C22×C8).104C22, (C2×C42).310C22, C22.79(C22⋊Q8), C22.138(C4⋊D4), (C22×C4).1396C23, C22.80(C8.C22), C2.13(M4(2)⋊C4), C2.14(C23.65C23), (C4×C4⋊C4).22C2, (C2×C4⋊C8).36C2, (C2×C8).44(C2×C4), (C2×C2.D8).9C2, C2.10(C2×C2.D8), (C2×C4).208(C2×Q8), (C2×C4).135(C4⋊C4), (C2×C4).1013(C2×D4), (C2×C4⋊C4).78C22, C22.114(C2×C4⋊C4), (C2×C4).866(C4○D4), (C2×C4).552(C22×C4), SmallGroup(128,679)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.29Q8
C1C2C22C23C22×C4C2×C42C4×C4⋊C4 — C42.29Q8
C1C2C2×C4 — C42.29Q8
C1C23C2×C42 — C42.29Q8
C1C2C2C22×C4 — C42.29Q8

Generators and relations for C42.29Q8
 G = < a,b,c,d | a4=b4=c4=1, d2=c2, ab=ba, ac=ca, dad-1=a-1, cbc-1=dbd-1=b-1, dcd-1=b-1c-1 >

Subgroups: 236 in 128 conjugacy classes, 72 normal (36 characteristic)
C1, C2, C4, C4, C4, C22, C8, C2×C4, C2×C4, C2×C4, C23, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2.C42, C4⋊C8, C2.D8, C2×C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22×C8, C22.4Q16, C4×C4⋊C4, C429C4, C2×C4⋊C8, C2×C2.D8, C42.29Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, D8, Q16, C22×C4, C2×D4, C2×Q8, C4○D4, C2.D8, C2×C4⋊C4, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C42.C2, C4⋊Q8, C2×D8, C2×Q16, C8⋊C22, C8.C22, C23.65C23, C2×C2.D8, M4(2)⋊C4, C4⋊D8, C42Q16, D4⋊Q8, C4.Q16, C42.29Q8

Smallest permutation representation of C42.29Q8
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 39 11 13)(2 40 12 14)(3 37 9 15)(4 38 10 16)(5 19 118 106)(6 20 119 107)(7 17 120 108)(8 18 117 105)(21 122 110 126)(22 123 111 127)(23 124 112 128)(24 121 109 125)(25 31 51 33)(26 32 52 34)(27 29 49 35)(28 30 50 36)(41 57 69 83)(42 58 70 84)(43 59 71 81)(44 60 72 82)(45 53 67 61)(46 54 68 62)(47 55 65 63)(48 56 66 64)(73 85 101 115)(74 86 102 116)(75 87 103 113)(76 88 104 114)(77 89 99 93)(78 90 100 94)(79 91 97 95)(80 92 98 96)
(1 57 25 61)(2 58 26 62)(3 59 27 63)(4 60 28 64)(5 78 122 102)(6 79 123 103)(7 80 124 104)(8 77 121 101)(9 81 49 55)(10 82 50 56)(11 83 51 53)(12 84 52 54)(13 69 33 45)(14 70 34 46)(15 71 35 47)(16 72 36 48)(17 96 112 88)(18 93 109 85)(19 94 110 86)(20 95 111 87)(21 116 106 90)(22 113 107 91)(23 114 108 92)(24 115 105 89)(29 65 37 43)(30 66 38 44)(31 67 39 41)(32 68 40 42)(73 117 99 125)(74 118 100 126)(75 119 97 127)(76 120 98 128)
(1 87 25 95)(2 86 26 94)(3 85 27 93)(4 88 28 96)(5 84 122 54)(6 83 123 53)(7 82 124 56)(8 81 121 55)(9 115 49 89)(10 114 50 92)(11 113 51 91)(12 116 52 90)(13 103 33 79)(14 102 34 78)(15 101 35 77)(16 104 36 80)(17 72 112 48)(18 71 109 47)(19 70 110 46)(20 69 111 45)(21 68 106 42)(22 67 107 41)(23 66 108 44)(24 65 105 43)(29 99 37 73)(30 98 38 76)(31 97 39 75)(32 100 40 74)(57 127 61 119)(58 126 62 118)(59 125 63 117)(60 128 64 120)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,39,11,13)(2,40,12,14)(3,37,9,15)(4,38,10,16)(5,19,118,106)(6,20,119,107)(7,17,120,108)(8,18,117,105)(21,122,110,126)(22,123,111,127)(23,124,112,128)(24,121,109,125)(25,31,51,33)(26,32,52,34)(27,29,49,35)(28,30,50,36)(41,57,69,83)(42,58,70,84)(43,59,71,81)(44,60,72,82)(45,53,67,61)(46,54,68,62)(47,55,65,63)(48,56,66,64)(73,85,101,115)(74,86,102,116)(75,87,103,113)(76,88,104,114)(77,89,99,93)(78,90,100,94)(79,91,97,95)(80,92,98,96), (1,57,25,61)(2,58,26,62)(3,59,27,63)(4,60,28,64)(5,78,122,102)(6,79,123,103)(7,80,124,104)(8,77,121,101)(9,81,49,55)(10,82,50,56)(11,83,51,53)(12,84,52,54)(13,69,33,45)(14,70,34,46)(15,71,35,47)(16,72,36,48)(17,96,112,88)(18,93,109,85)(19,94,110,86)(20,95,111,87)(21,116,106,90)(22,113,107,91)(23,114,108,92)(24,115,105,89)(29,65,37,43)(30,66,38,44)(31,67,39,41)(32,68,40,42)(73,117,99,125)(74,118,100,126)(75,119,97,127)(76,120,98,128), (1,87,25,95)(2,86,26,94)(3,85,27,93)(4,88,28,96)(5,84,122,54)(6,83,123,53)(7,82,124,56)(8,81,121,55)(9,115,49,89)(10,114,50,92)(11,113,51,91)(12,116,52,90)(13,103,33,79)(14,102,34,78)(15,101,35,77)(16,104,36,80)(17,72,112,48)(18,71,109,47)(19,70,110,46)(20,69,111,45)(21,68,106,42)(22,67,107,41)(23,66,108,44)(24,65,105,43)(29,99,37,73)(30,98,38,76)(31,97,39,75)(32,100,40,74)(57,127,61,119)(58,126,62,118)(59,125,63,117)(60,128,64,120)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,39,11,13)(2,40,12,14)(3,37,9,15)(4,38,10,16)(5,19,118,106)(6,20,119,107)(7,17,120,108)(8,18,117,105)(21,122,110,126)(22,123,111,127)(23,124,112,128)(24,121,109,125)(25,31,51,33)(26,32,52,34)(27,29,49,35)(28,30,50,36)(41,57,69,83)(42,58,70,84)(43,59,71,81)(44,60,72,82)(45,53,67,61)(46,54,68,62)(47,55,65,63)(48,56,66,64)(73,85,101,115)(74,86,102,116)(75,87,103,113)(76,88,104,114)(77,89,99,93)(78,90,100,94)(79,91,97,95)(80,92,98,96), (1,57,25,61)(2,58,26,62)(3,59,27,63)(4,60,28,64)(5,78,122,102)(6,79,123,103)(7,80,124,104)(8,77,121,101)(9,81,49,55)(10,82,50,56)(11,83,51,53)(12,84,52,54)(13,69,33,45)(14,70,34,46)(15,71,35,47)(16,72,36,48)(17,96,112,88)(18,93,109,85)(19,94,110,86)(20,95,111,87)(21,116,106,90)(22,113,107,91)(23,114,108,92)(24,115,105,89)(29,65,37,43)(30,66,38,44)(31,67,39,41)(32,68,40,42)(73,117,99,125)(74,118,100,126)(75,119,97,127)(76,120,98,128), (1,87,25,95)(2,86,26,94)(3,85,27,93)(4,88,28,96)(5,84,122,54)(6,83,123,53)(7,82,124,56)(8,81,121,55)(9,115,49,89)(10,114,50,92)(11,113,51,91)(12,116,52,90)(13,103,33,79)(14,102,34,78)(15,101,35,77)(16,104,36,80)(17,72,112,48)(18,71,109,47)(19,70,110,46)(20,69,111,45)(21,68,106,42)(22,67,107,41)(23,66,108,44)(24,65,105,43)(29,99,37,73)(30,98,38,76)(31,97,39,75)(32,100,40,74)(57,127,61,119)(58,126,62,118)(59,125,63,117)(60,128,64,120) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,39,11,13),(2,40,12,14),(3,37,9,15),(4,38,10,16),(5,19,118,106),(6,20,119,107),(7,17,120,108),(8,18,117,105),(21,122,110,126),(22,123,111,127),(23,124,112,128),(24,121,109,125),(25,31,51,33),(26,32,52,34),(27,29,49,35),(28,30,50,36),(41,57,69,83),(42,58,70,84),(43,59,71,81),(44,60,72,82),(45,53,67,61),(46,54,68,62),(47,55,65,63),(48,56,66,64),(73,85,101,115),(74,86,102,116),(75,87,103,113),(76,88,104,114),(77,89,99,93),(78,90,100,94),(79,91,97,95),(80,92,98,96)], [(1,57,25,61),(2,58,26,62),(3,59,27,63),(4,60,28,64),(5,78,122,102),(6,79,123,103),(7,80,124,104),(8,77,121,101),(9,81,49,55),(10,82,50,56),(11,83,51,53),(12,84,52,54),(13,69,33,45),(14,70,34,46),(15,71,35,47),(16,72,36,48),(17,96,112,88),(18,93,109,85),(19,94,110,86),(20,95,111,87),(21,116,106,90),(22,113,107,91),(23,114,108,92),(24,115,105,89),(29,65,37,43),(30,66,38,44),(31,67,39,41),(32,68,40,42),(73,117,99,125),(74,118,100,126),(75,119,97,127),(76,120,98,128)], [(1,87,25,95),(2,86,26,94),(3,85,27,93),(4,88,28,96),(5,84,122,54),(6,83,123,53),(7,82,124,56),(8,81,121,55),(9,115,49,89),(10,114,50,92),(11,113,51,91),(12,116,52,90),(13,103,33,79),(14,102,34,78),(15,101,35,77),(16,104,36,80),(17,72,112,48),(18,71,109,47),(19,70,110,46),(20,69,111,45),(21,68,106,42),(22,67,107,41),(23,66,108,44),(24,65,105,43),(29,99,37,73),(30,98,38,76),(31,97,39,75),(32,100,40,74),(57,127,61,119),(58,126,62,118),(59,125,63,117),(60,128,64,120)]])

38 conjugacy classes

class 1 2A···2G4A···4H4I···4R4S4T4U4V8A···8H
order12···24···44···444448···8
size11···12···24···488884···4

38 irreducible representations

dim1111111222222244
type++++++-+-++-+-
imageC1C2C2C2C2C2C4Q8D4Q8D4D8Q16C4○D4C8⋊C22C8.C22
kernelC42.29Q8C22.4Q16C4×C4⋊C4C429C4C2×C4⋊C8C2×C2.D8C4⋊C8C42C4⋊C4C4⋊C4C22×C4C2×C4C2×C4C2×C4C22C22
# reps1211128222244411

Matrix representation of C42.29Q8 in GL6(𝔽17)

100000
010000
001000
000100
0000116
0000216
,
100000
010000
0001600
001000
000010
000001
,
010000
1600000
0016700
007100
0000161
0000151
,
1250000
550000
001700
0071600
0000130
000094

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,2,0,0,0,0,16,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,16,0,0,0,0,1,0,0,0,0,0,0,0,16,7,0,0,0,0,7,1,0,0,0,0,0,0,16,15,0,0,0,0,1,1],[12,5,0,0,0,0,5,5,0,0,0,0,0,0,1,7,0,0,0,0,7,16,0,0,0,0,0,0,13,9,0,0,0,0,0,4] >;

C42.29Q8 in GAP, Magma, Sage, TeX

C_4^2._{29}Q_8
% in TeX

G:=Group("C4^2.29Q8");
// GroupNames label

G:=SmallGroup(128,679);
// by ID

G=gap.SmallGroup(128,679);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,232,422,100,2019,1018,248]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=c^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=b^-1*c^-1>;
// generators/relations

׿
×
𝔽